

Providing a knowledge base and accelerating development of safety regulations for future fuels

Nordic Roadmap webinar

Linda Sigrid Hammer Principal Consultant, DNV Environment advisory

Safety is a prerequisite for the successful and timely introduction of carbon-neutral fuels

- Lack of international safety regulations is a barrier against their implementation
- Development of regulations in IMO is key to reduce this barrier
- The Nordic Countries may help accelerate the process in IMO

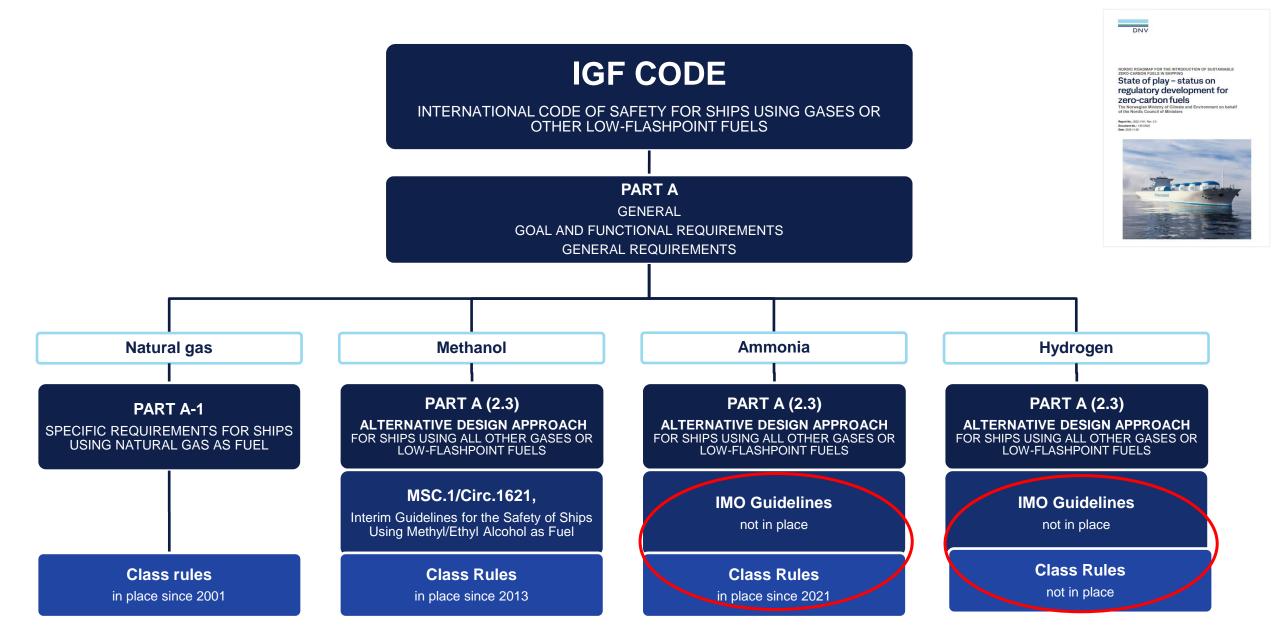
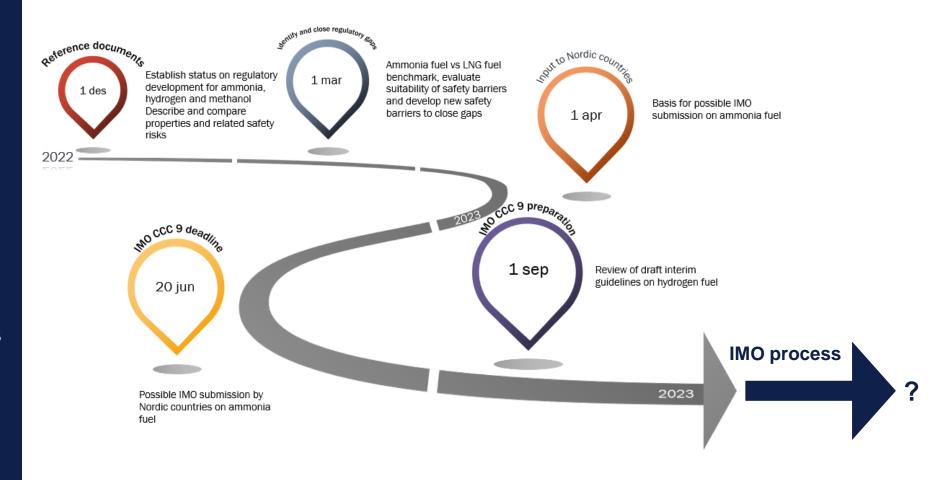


Figure 5-1 Regulatory status per fuel


Work stream on safety to accelerate the process

Deliverables 2022

- State of play status on regulatory development for zerocarbon fuels
- 2. Fuel properties and their consequence for safety and operability

Deliverables 2023

- Base document for draft interim guidelines for ships using ammonia as fuel
- 2. Review of draft interim guidelines for ships using hydrogen as fuel

Four technical deliverables from Task 1-B

Work based on safety concept of the current regulations in the IGF Code for natural gas fuel

Segregation

Protect fuel installation from external events

System integrity

Minimize leakages from fuel installation

Leakage detection

Give warning and enable automatic safety actions

Double barriers

Protect ship against leakages

Automatic isolation of leakages

Reduce consequence of a leakage

Findings - Safety risks related to flammability properties

Relatively low	Medium	High	Very high

	Flashpoint (°C)	Flammability range (%vol. fraction)	Minimum ignition energy (mJ)	Auto-ignition temperature (°C)	Laminar burning velocity (m/s)
Methane	_*	5.3-17	0.274	537	0.37
Methanol	12	6-36.5	0.174	385	0.48
Ammonia	_*	15-28	40-170	650	0.07
Hydrogen	_*	4-77	0.017	585	2.7

^{*}The gaseous fuels do not have a defined 'flashpoint' like the liquid fuels, but will instead transfer fully into gaseous form at ambient conditions, due to the low boiling temperatures.

Findings - Safety risks related to storage, release and dispersion properties

Relatively low	Medium	High	Very high
----------------	--------	------	-----------

	Normal boiling	Density	(kg/m³)	Expansion ratio	Toxicity	
	point (°C)			liquid NBP/gas NTP	IDLH (ppm)	
Methane	-162	1.819	0.6594	600	Asphyxiation	
Methanol	64.9	-	1.11*	-	6000	
Ammonia	-33.4	0.89**	0.610**	850	300	
Hydrogen	-253	1.312	0.0827	847	Asphyxiation	

G – gas

L - liquid

NTP - normal temperature and pressure

NBP - normal boiling point

IDLH – Immediately Dangerous to Life or Health Concentrations specified by the United States National Institute for Occupational Safety and Health (NIOSH)

^{*} Specific gravity of methanol vapour

^{**}Due to hygroscopic properties ammonia vapours reacts with moisture in air resulting in a density that is heavier than air.

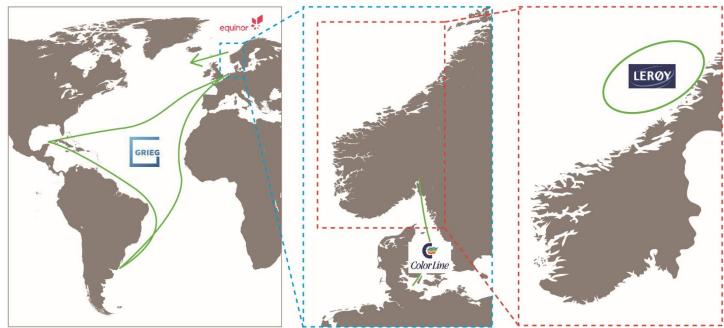
Findings – Is the IGF safety concept for natural gas also suitable for ammonia and hydrogen?

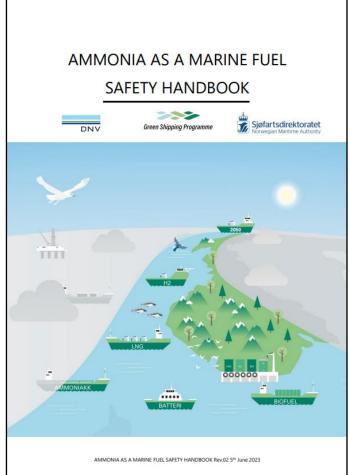
IGF	IGF	IGF	IGF
can be used	minor changes	major changes	questionable

	Segre	gation	System	integrity		Double	barriers		Leakage detection	Automatic isolation of leakages
	Mechanical damage	External fire	System design	Operational and emergency discharges	Piping	ESD machinery space	Double barrier spaces	Ventilation	LEL	ESD valves
Ammonia			corrosivity pressure toxicity	toxicity	toxicity	toxicity	toxicity	toxicity	toxicity	toxicity
Hydrogen			leakage, embrittlement, flammability	flammability	flammability	flammability	flammability	flammability	density, flammability range	flammability

Resulting IMO submissions to CCC 9

AMENDMENTS TO THE IGF CODE AND DEVELOPMENT OF GUIDELINES FOR ALTERNATIVE FUELS AND RELATED TECHNOLOGIES


CCC 9/3/Add.1	Report of the Correspondence Group (Germany) Annex 6 – Base Document for Draft Interim Guidelines for the Safety of Ships Using Ammonia as Fuel
CCC 9/INF.7	Supporting information to the draft interim guidelines for the safety of ships using ammonia as fuel Submitted by Denmark, Finland, Norway and Sweden



A revised Ammonia Safety Handbook from the Green Shipping programme (GSP)

To provide practical guidance on safety aspects of ship design in the development of ammonia fuelled ships for ship owners, yards and designers

DNV

Possible safety barriers addressing toxicity of ammonia

Toxic exposure protection - definitions of toxic zones

Arrange mustering stations and LSA away from toxic hazards

Arrange Safe Haven where personnel onboard can take refuge

Ammonia release mitigation system (ARMS) collecting and handling operational releases of ammonia

Toxicity hazards

Revise alarm levels to provide warnings of toxic levels of ammonia

Performing risk assessment specific for ammonia

Sufficient personal protective equipment (PPE)

Apply water spray systems to reduce extent of toxic vapours

Avoid portable tanks for ammonia

No ESD protected machinery spaces

Indefinite holding time for ammonia storage tanks

Extensive and shipspecific fuel handling manual

futurefuelsnordic.com

For more information contact:

Task leader - Technical and regulatory analysis Linda Sigrid Hammer

linda.sigrid.hammer@dnv.com

+47 99044288

www.dnv.com

Technical and regulatory analysis Marius Leisner

marius.leisner@dnv.com

+47 90097826

