

Life Cycle Assessment of Marine Fuels in the Nordic Region

Selma Brynolf (Chalmers), Julia Hansson (IVL & Chalmers), Fayas Mailk Kanchiralla (Chalmers), Elin Malmgren (Chalmers), Erik Fridell (IVL), Håkan Stripple (IVL), Pavinee Nojpanya (IVL)

Updates after presentation 14th of November

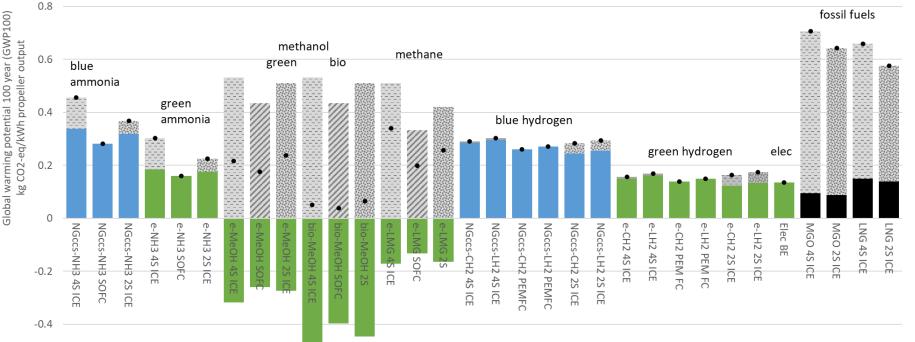
- Review of emission factors
- Update of some non-GHG emission factors, e.g., formaldehyde, black carbon
- Small adjustment in amount of pilot fuel amount for 4-stroke engines
- No major changes in results

Goal and functional unit

- Goal: to assess the climate and environmental impact of selected potential zerocarbon fuels for marine use (including hydrogen, ammonia and methanol) using life cycle assessment (LCA)
- To increase knowledge of the sustainability of various marine fuels relevant for the Nordics, to verify under what conditions they represent sustainable zero-carbon fuels, and potential trade-offs connected to other environmental impact categories
- Functional unit: 1 kWh of mechanical energy to the propeller shaft and proportional auxiliary and thermal load
- Results provided for a limited number of typical ship types operating in the Nordics

Scope of the study

- Time horizon: ships operated during 2030 with an outlook to 2050
- Technical system boundaries: fuel production (incl. infrastructure) from cradle until delivered to tank onboard, onboard fuel use for ship transport and construction of propulsion system
- Geographical focus: Nordic fuel production (Norwegian natural gas, Nordic electricity mix) etc.)
- Impact categories in focus: Climate change (GWP20 and GWP100), Acidification, Particulate matter.
- Additional impact categories considered for screening of potential environmental hot-spots
- Data: Specific data used when possible. Background data mainly from Ecoinvent 3.7.1.
- Extensive LCA literature review and comparison with proposed IMO guidelines


Pathways considered

Energy carriers	Fossil fuel production pathways without	Blue fuel production pathways Steam reforming of natural gas with carbon capture and storage (NGccs-)		production ways		Total # of combination s considered						
	carbon capture		Biomass (bio-)	Nordic electricity mix (e-)	4-stroke engines (4S ICE)	4-stroke dual-fuel engines (4S-DF ICE)	2-stroke engines (2S ICE)	2-stroke dual-fuel engines (2S-DF ICE)	Proton- exchange membrane fuel cells (PEM FC)	Solid oxide fuel cells (SOFC)	Battery electric (Elec BE)	Considered
Ammonia (NH3) ^c		Yes		Yes		Yes		Yes		Yes		6
Compressed hydrogen (CH2) ^c		Yes		Yes		Yes		Yes	Yes			6
Liquid hydrogen (LH2)°		Yes		Yes		Yes		Yes	Yes			6
Methanol (MeOH) ^c			Yes	Yes		Yes		Yes		Yes		6
Liquid methane gas (LMG) ^c				Yes		Yes		Yes		Yes		3
Electricity				Yes							Yes	1
Liquid natural gas (LNG)	As reference					Yes		Yes				2
Marine gas oil (MGO)	As reference				Yes		Yes					2

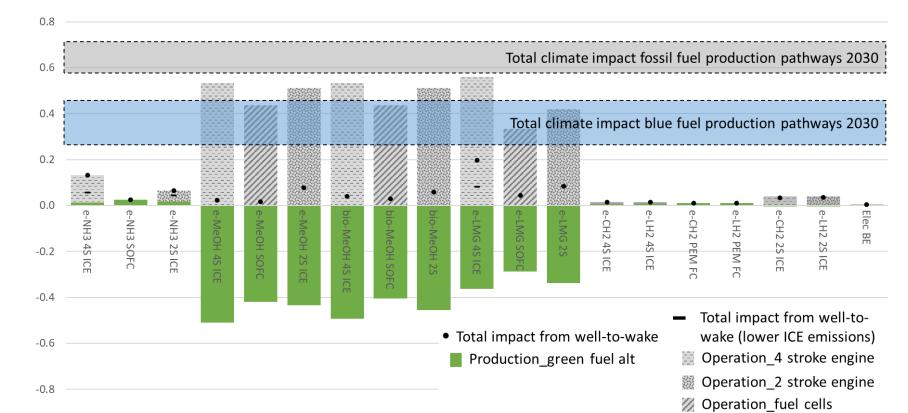
Climate impact

Estimated life cycle climate impact in 2030 (GWP100) WtW, Nordic electricity mix

-0.6

-0.8

- Total impact from well-to-wake
- Production_green fuel alt
- Production_blue fuel
- Production_fossil fuel
- Operation_4 stroke engineOperation_2 stroke engineOperation_fuel cells



Outlook for 2050

Parameter	Assumption used in 2030	Assumption used in 2050							
Electricity used for fuel production	Nordic grid mix forecasted by Nordic Clean Energy Scenarios (79.6 g CO ₂ /kWh)	Low emission power production (2.4 c CO ₂ /kWh)							
Fuel pathways	Green and blue	Green							
Electrolysers	Alkaline	SOEC							
Production and refining of materials used	Today's production	Assumed new process with close to zero GHG emissions							
Urea production	From natural gas	From renewable resources							
ICE emissions of CH_4 and N_2O for ammonia and methane engines	4SNH3ICE: N ₂ O of 0.3g/kWh 2SNH3ICE: N ₂ O of 0.09g/kWh 4SLNGICE: CH ₄ of 3.4g/kWh 4SLMGICE: CH ₄ of 0.2g/kWh	Two cases: (1) same as 2030 and (2) 1/10 of 2030 emissions 4SNH3ICE: N ₂ O of 0.03g/kWh 2SNH3ICE: N2O of 0.009g/kWh 4SLNGICE: CH4 of 0.34g/kWh 2SLMGICE: CH4 of 0.02g/kWh							

Outlook life cycle climate impact in 2050 (GWP100), WtW, Nordic electricity mix

What about other environmental impact?

Results from a screening life cycle assessment

Impact category	NGccs- 1 NH3 4S 1 ICE 5		IH3 254					e- e MeOH 2 SOFC		MeOH	bio- b MeOH M SOFC 2	/leOH		e-CH4 e SOFC 2	s c	NGccs- CH2 4S CE		H2 LI		H2 25 1	NGccs- e LH2 2S 4 ICE			e-CH2 e- PEM FC PI			E-LH2 El	ec BE
Acidification	0.8	0.2	0.9	0.7	0.2	0.8	0.7	0.2	0.8	0.6	0.1	0.7	0.7	0.2	0.9	0.7	0.7	0.2	0.2	0.8	0.8	0.6	0.6	0.1	0.1	0.8	<mark>0.8</mark>	0.2
Ecotoxicity, freshwater	1	0.8	1	2	1.5	2	2.1	1.8	1.9	0.2	0.2	0.2	2.3	1.8	2.2	0.5	0.6	0.5	0.5	0.5	0.6	1.3	1.4	1.2	1.2	1.3	1.3	0.8
Ecotoxicity, freshwater - inorganics	0.3	0.2	0.3	0.2	0.2	0.2	0.3	0.3	0.3	0.1	0.1	0.1	0.3	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ecotoxicity, freshwater - metals	1.6	1.3	1.6	3.4	2.7	3.4	3.7	3.1	3.3	0.4	0.4	0.4	3.9	3.2	3.8	0.8	1	0.7	0.9	0.8	0.9	2.3	2.4	2.1	2.2	2.2	2.3	1.3
Ecotoxicity, freshwater - organics	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Eutrophication, freshwater	1	0	1	1	0	1	0.9	0	1	0.9	0	1	0.9	0	1	0.9	0.9	0	0	1	1	0.9	0.9	0	0	1	1	0
Eutrophication, marine	0.2	0.2	0.4	0.2	0.1	0.3	0.2	0.1	1.1	0.1	0.1	1	0.2	0.2	1.2	0.2	0.2	0.1	0.1	1.1	1.1	0.1	0.1	0.1	0.1	1	1	0.1
Eutrophication, terrestrial	0	0	0.1	0	0	0.1	0.1	0	1.1	0	0	1	0.1	0	1.1	0	0	0	0	1	1	0	0	0	0	1	1	0
Human toxicity, cancer	0.1	0.1	0.3	0.2	0.1	0.3	0.1	0.1	1.1	0.1	0.1	1.1	0.3	0.2	1.3	0.1	0.1	0	0.1	1	1.1	0.1	0.1	0.1	0.1	1.1	1.1	0.1
Human toxicity, cancer - metals	1	0	1	1	0	1	1.1	0	1	1.1	0	1	1	0	1	0.9	0.9	0	0	1	1	0.9	0.9	0	0	1	1	0
Human toxicity, non-cancer	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0
Human toxicity, non-cancer - inorganics	0.4	0	0.4	0.4	0	0.5	0.3	0	0.5	0.3	0	0.4	0.3	0	0.5	0.3	0.3	0	0	0.4	0.4	0.3	0.3	0	0	0.5	0.5	0.1
Human toxicity, non-cancer - metals	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0
Human toxicity, non-cancer - organics	5.2	4.1	5.2	3.4	2.7	3.4	1	0.8	0.9	1.2	1	1.2	1.5	0.9	1	2.2	2.2	1.9	2	2.1	2.1	0.6	0.7	0.6	0.6	0.6	0.7	1.7
Ionising radiation	1.1	0.8	1.1	9.9	7.8	10	11.2	9.3	10.1	0.6	0.5	0.6	11.1	9	10.9	0.9	1.5	0.8	1.3	0.8	1.4	8.2	8.8	7.4	8	8	8.6	12
Land use	1	0.8	1	7.3	5.8	7.4	8.1	6.8	7.3	1.3	1.1	1.3	8.1	6.5	7.9	0.7	1.2	0.6	1	0.7	1.1	5.9	6.3	5.3	5.7	5.7	6.2	0.5
Ozone depletion	0.7	0.6	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0.6	0.6	0.6	0.6	0.6	0.6	0	0	0	0	0	0	0
Particulate matter	0.8	0.5	0.8	1.6	1.2	1.6	1.8	1.5	1.7	0.5	0.4	0.5	2.1	1.6	2	0.4	0.5	0.4	0.4	0.5	0.5	1.1	1.2	1	1.1	1.1	1.2	1.1
Photochemical ozone formation	1.5	1.1	1.5	0.9	0.7	0.9	1.1	0.9	1	0.7	0.6	0.7	1.4	0.8	1	1.1	1.1	1	1	1.1	1.1	0.6	0.7	0.6	0.6	0.6	0.7	0.5
Resource use, fossils	1.4	1.1	1.4	1	0.8	1	1.1	0.9	1	0.1	0.1	0.1	1.1	0.9	1.1	1.2	1.3	1.1	1.1	1.2	1.2	0.8	0.9	0.7	0.8	0.8	0.8	1.2
Resource use, minerals and metals	84.4	66.4	84.8	68	53.4	68.3	7.1	5.9	6.4	26.2	21.9	25.7	7.1	5.7	7	18.4	18.7	16.7	16.9	17.9	18.2	4.4	4.6	3.9	4.1	4.2	4.5	6
IPCC 2021 GWP 100	0.6	0.4	0.6	0.4	0.2	0.4	0.3	0.2	0.4	0.1	0.1	0.1	0.5	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.2	0.2	0.2	0.2	0.3	0.3	0.2
IPCC 2021 GWP 20	1	0.7	0.9	0.4	0.2	0.4	0.3	0.3	0.4	0.1	0.1	0.1	0.8	0.3	0.5	0.7	0.7	0.6	0.6	0.7	0.8	0.2	0.2	0.2	0.2	0.3	0.3	0.3

Green=substantial decrease in impact compared to MGO, Yellow= same/almost the same impact Orange=clear increased impact, Red=considerable increase compared to MGO

Summary

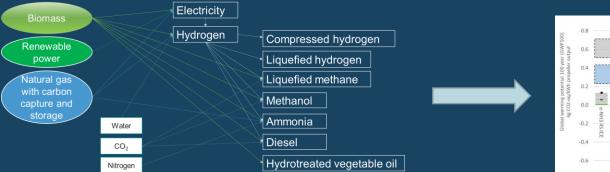
Findings climate impact

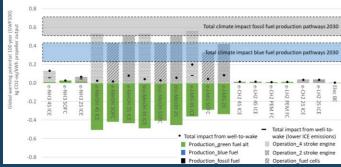
- Possible to substantially reduce climate impact by introducing the assessed fuel-propulsion options by 2030 (2050 even more).
- Blue pathways have higher climate impacts than green pathways.
- Green methanol, hydrogen and electricity pathways show lower climate impact compared to ammonia and methane pathways
- Fuel cells lower climate impact compared to internal combustion engine pathways.

Regarding ship emissions

- Several fuel and powertrain options under development (NH₃,H₂)
 -> their actual climate and environmental performance in 2030-2050 uncertain lack of knowledge on emissions
- Possible to reduce fuel related emissions of CH₄ and N₂O (methane and NH₃ pathways) but with a cost. Regulation needed for these emissions too!
- More emission measurements from ships in operation for different operational profiles needed to verify and improve environmental performance

Other types of environmental impacts


- Other environmental impacts also need to be assessed
- Some impact categories need more investigation


In general

- LCA need to be updated as new data become available
- Detailed ship specific LCAs also needed

Thank you for listening! Questions?

Selma Brynolf, Researcher, <u>selma.brynolf@</u> <u>chalmers.se</u>

Julia Hansson, Researcher, Chalmers & IVL julia.hansson@ivl.se